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When a high-speed train enters a tunnel, it generates a compression wave which
propagates along the tunnel ahead of the train. A small proportion of the wave
subsequently emerges from the exit portal of the tunnel as an impulsive wave. This
so-called micro-pressure wave causes annoyance through low frequency noise and
vibrations in the surrounding area. The objective of this paper is to determine the
optimum dimensions of an expansion chamber at the tunnel exit portal for the
purpose of reducing the micro-pressure wave. The effects of expansion chambers
are investigated numerically and experimentally. Optimum proportions of a
right-cylindrical chamber are found and a clear relationship is obtained between
the total volume and the degree of attenuation of the micro-pressure wave.
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1. INTRODUCTION

When trains pass through tunnels at high speed, pressure waves are generated and
propagate back and forth along the tunnel. They are a potential source of
discomfort to passengers on board the trains [1] and considerable effort has been
devoted to reducing their effects. Methodologies for improving conditions for
passengers include aerodynamic sealing of trains, connecting the tunnel to
atmosphere by intermediate shafts and constructing long extension regions beyond
portals [2].

Outside Japan, much less effort has been devoted to a second consequence of
the pressure waves, namely the emission of small, higher frequency waves from
tunnel exit portals during the internal reflection of the steepest parts of the main
waves. Inside Japan, this topic has been studied for over 30 years and it is well
understood [3]. There are three reasons for the geographical difference. First, the
high-speed train era began in Japan. Second, many Japanese tunnels have been
built using slab-track technology (no ballast). Third, many tunnels in Japan are
close to areas of population. There are houses within 50 m of tunnel portals and
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the micro-pressure waves cause doors and windows to rattle. The first two of these
reasons are now equally applicable in several countries outside Japan.

Experience in Japan shows that the amplitude of the micro-pressure waves (and
hence the degree of annoyance that they cause) correlates strongly with the
steepness of the wavefront arriving at the exit portal and is almost independent
of the magnitude of the wavefront. This result cannot be true universally, but it
is nearly so in conventional tunnels because the shapes of the approaching
wavefronts are always of a broadly similar form. If significantly different shapes
existed, then account would need to be taken of their magnitudes as well as their
associated rates of change of pressure.

Most research has been focused on reducing the steepness of the wavefront
reaching the tunnel exit. Possibilities include building extension regions outside
tunnel entrance portals (see, e.g., reference [4]) and/or elongating train noses. The
objective of these methods of solution is to reduce the rate of change of pressure
caused by the initiating event. Subsequent steepening as the wavefront propagates
along the tunnel reduces the effectiveness, but sufficiently long hoods or noses can
be highly effective.

Another possibility is to modify the wave propagation process by means of side
branches along the tunnel itself. Maeda [5] showed this to be effective
aerodynamically, but it might be more costly than portal extensions.

With sufficiently high train speeds, well-designed hoods at exit portals would
be more effective than well-designed (but different) hoods at entrance portals.
These speeds are not yet in operation, but they are being approached. Even at
today’s speeds, it may be valuable to use exit modifications in addition to entrance
hoods [6, 7].

In the case of single-track tunnels with a predetermined direction of travel,
portal modifications can be designed specifically for train entry and exit,
respectively. In contrast, the portals of twin-track tunnels must act as
entrances as well as exits and so the optimum design of any modification must take
account of both purposes. Nevertheless, only exit requirements are considered
herein.

1.1.    

The disturbances emanating from tunnel exit portals are related to those
emerging from gun muzzles [8], from rocket venturis [9] or exhaust systems of
internal combustion engines [10]. From an analytical point of view, the
phenomenon is inherently simpler because the gas (air) is nearly ideal and the
pressure magnitudes are small. From a practical point of view, however, the large
dimensions of tunnels (typically 8–10 m in diameter) restrict the range of visually
acceptable solutions.

In parallel with research on passive devices such as those considered herein,
there is other research on active methods of attenuation (see, e.g., references
[11–15]). In all cases, it is important that modifications designed to improve
external conditions should not significantly worsen conditions inside the tunnel
[2, 16].
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2. THEORETICAL BASIS

The numerical method is a TVD scheme, using a local characteristics approach
with shock capturing. The method is summarized in this section; more detail has
been given by Yee [17]. Herein, all pressure fluctuations are much smaller than
those for which shocks deviate significantly from isentropic behaviour. Moreover,
the wavefronts do not steepen sufficiently for true shocks to develop. The
advantage of using this particular method of analysis is that it enables sudden
changes in pressure (and velocity) to pass through the solution domain without
significant numerical distortion.

Equations describing the adiabatic, inviscid, axi-symmetric flow of a perfect gas
may be written in conservation form as

1U/1t+ 1F/1x+ 1G/1y+W=0, (1)

in which
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where r is the mass density, u, v are the axial and radial velocity components, p
is the pressure and e is the sum of the internal energy per unit mass and the kinetic
energy per unit mass, namely

e= cvT+ 1
2(u

2 + v2), (3)

where cv is the specific heat capacity at constant density and T is the absolute
temperature. (A list of symbols is given in the Appendix.)

The system is closed by the thermal equation of state for a perfect gas, namely

p= rRT, (4)

where R is the gas constant. Herein the gas properties are taken for air to be
cv =R/(g−1)=718 J/kg K and R=287 J/kg K. The specific heat capacity at
constant pressure is taken as cp = gR/(g−1)=1005 J/kg K and so the ratio
g= cp /cv is 1·400.
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In the following development, the equations are used in a non-dimensional
form, using ambient atmospheric conditions (pAT , rAT and cAT ) and the tube
diameter D as reference parameters: namely,

p'0
p

pAT
, r'0

r

rAT
, u'0

u
cAT /g1/2 ,

v'0
v

cAT /g1/2 , t'0
t

(D/cAT )g1/2 , x'0
x
D

, y'0
y
D

. (5)

For clarity of presentation, the primes are omitted hereafter.

2.1.  

The equations are solved numerically by a second-order, symmetric, total
variation diminishing (TVD) scheme [17] together with an operator splitting
technique [18]. In this two-dimensional approach, each direction is treated in
essentially the same manner as for one-dimensional flows. For brevity, only one
direction is described.

The characteristic wavespeeds are the eigenvalues ak of the Jacobian matrix
1F/1U, namely

a1 = u− c, a2 = u, a3 = u+ c (6)

where c is the local speed of sound relative to the flow. The right-eigenvector
matrix is

& 1
u− c

H− uc

1
u

1
2u

2

1
u+ c

H+ uc', (7)

where H= cpT+ 1
2(u

2 + v2) is the stagnation enthalpy per unit mass. By using
Roe’s [19] approximate Riemann solver, the magnitudes of the jumps in the
characteristic variables are expressed as

ai+1/2 =R−1
i+1/2(Ui+1 −Ui ), (8)

in which the subscript (i+ 1
2) denotes an average state between adjacent grid points

i and i+1 and R−1 is the inverse of the eigenvector matrix, namely

R−1 = &12(b1 + u/c)
1− b1

1
2(b1 − u/c)

−1
2(ub2 +1/c)

ub2

−1
2(ub2 −1/c)

1
2b2

−b2
1
2b2', (9)

where b1 = 1
2(g−1)u2/c2 and b2 = (g−1)/c2.

The solution at a particular position iDx and time (n+1)Dt is expressed in the
form

Ui,n+1 =Ui,n −
Dt
Dx

[F
 i+1/2,n −F
 i−1/2,n ], (10)



  -  925

where F
 denotes a numerical flux vector [17]. When solving by the local
characteristic approach, F
 is related to the true flux vector F by, typically,

F
 i+1/2 = 1
2[Fi +Fi+1 +Ri+1/2Fi+1/2] (11)

where R is the eigenvector matrix and F is a vector designed to eliminate
non-physical behaviour in regions of strongly varied flow, especially close to
sudden changes in flow parameters. It includes (i) an ‘‘entropy correction function
C’’ that ensures that the process converges only to physically possible solutions
even though the conservation laws (equation (1)) include no constraints from the
second law of thermodynamics, and (ii) a ‘‘limiter function Q’’ that prevents
numerical oscillations by restricting the magnitude of the numerical flux vector.

The elements of the vector F have the form

fk =−
Dt
Dx

(ak)2Qk −c(ak)[ak −Qk], (12)

where the limiter function is given, typically, by

qk
i+1/2 =minmod [ak

i−1/2, ak
i+1/2, ak

i+3/2]. (13)

The entropy correction function is

c(ak)= 8 =ak=
1
2d

((ak)2 + d2)

when =ak=e d

when =ak=Q d9, (14)

in which d is a small positive number, taken herein as 0·01.

2.2.     

The solution space is the shaded region depicted in the upper part of Figure 1.
A tube of diameter D has an expansion chamber of diameter d at its downstream
end. There is an infinite baffle plate at the outlet. The length and height of the
expansion chamber are denoted by l and h (=1

2[d−D]) respectively and the width
of the baffle plate is w.

The slip-wall condition is used at all solid surfaces and symmetric conditions
are assumed at the centre-line. Null-reflection conditions are used at the outer
edges of the region outside the tunnel portal, based on ambient atmospheric
pressure.

Physical experiments. For comparisons with the experimental measurements
reported herein, the initial condition is stationary flow at atmospheric pressure.
The upstream boundary condition—at the left-hand end of Figure 1—is initially
defined by the measured pressure history, smoothed to eliminate experimental
noise. It converts automatically to a null-reflection condition when upstream-
moving waves begin to arrive from the chamber.

Numerical experiments. For all simulations except those designed to reproduce
the model experiments, the upstream boundary condition and the initial conditions
are represented in the manner recommended by Ozawa [3]. He recognized that a
large number of parameters can have a strong influence on the particular shape
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Figure 1. Expansion chamber geometry and computational field.

of the wavefront approaching the exit portal of a tunnel. Relevant parameters
include the following: Tunnel: length, area, track type (ballast or slab), track
eccentricity, portal shape; train: area, nose shape, underbody and pantograph
geometry, speed.

Ozawa (who, at that time, worked for the Railway Technical Research Institute
in Japan) had access to many pressure histories measured in tunnels. Following
previous work by Yamamoto [20] he showed that steep wavefronts in slab-track
tunnels resemble the typical shape illustrated in Figure 2, at least qualitatively. For
the first few kilometres of propagation along a tunnel, inertial steepening
dominates frictional resistance; thereafter, the reverse is true.

The pressure Dp at any position x along the curve in Figure 2 satisfies

Dp
pAT

=
Dp*
pAT $12−

1
p

tan−1 6px
L 7%, (15)

in which L is a length that is used to characterize the maximum steepness of the
wavefront, Dp* is the difference between the asymptotic pressures at 2a and pAT

denotes atmospheric pressure. Ozawa found that the pressure gradient Dp*/L has
a crucial influence on the amplitude of the micro-pressure wave emitted from a



0.012

0.003

0.006

0.009

0.000
–2–4 0 2 4

x/D

p
/p

A
T

 

p
* /p

A
T

L/D

  -  927

Figure 2. Idealized form of a train-entry wavefront.

simple tunnel portal. The relationship between these parameters is approximately
linear.

Equation (15) applies throughout −aQ xQa. To enable it to be used as an
initial condition in the numerical analysis, its range is restricted to
−10 D/3Q xQ 10 D/3 and it is scaled to achieve Dp=Dp* at the upstream
boundary (x=−10 D/3) and Dp=0 at the left-hand end of the expansion
chamber (x=10 D/3). The scaling factor is approximately 1·03. The initial
velocity distribution at t=0 is deduced from (the scaled form of) equation (15)
by assuming that no disturbance has propagated upstream. That is, the velocity
at each point in the cross-section at any position x is set equal to Dp/(rc) where
r is the density of the air and c is the undisturbed speed of sound.

Null reflection conditions are assumed at the upstream boundary throughout
tq 0. In practice, this ensures that the boundary pressure does not change until
reflections begin to arrive from the expansion chamber.

3. COMPARISONS WITH EXPERIMENTAL MEASUREMENTS

The experimental apparatus used in the present work is a simple open-ended
shock tube [16]. Its diameter is 76 mm and its overall length is 6·1 m. The high
pressure section, which has a length of 2·7 m, is initially separated from the low
pressure region by a paper diaphragm. When the upstream pressure is gradually
increased, the diaphragm ruptures passively. Hitherto, all work with this facility
had been carried out by using dry diaphragms, leading to abrupt rupture and very
steep wavefronts. Following an inspired suggestion by Setoguchi [21], however, the
present results include cases with slightly wet paper, leading to less abrupt rupture.
Typically the bursting pressures of the dry and wet diaphragms are about 12 and
6 kPa, respectively.
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The geometry of the expansion chamber used in the present study is illustrated
in Figure 1. All chambers were axi-symmetric and, in most tests, there was a baffle
plate at the downstream end. In the following theoretical analysis, this is treated
as being infinite. In the apparatus, it was a wooden sheet of sufficiently large
dimensions for its finite size to be irrelevant herein. There is evidence, however,
that the structural support for the plate was not sufficiently stiff. This is a probable
explanation for a discrepancy between measured and predicted pressures on the
plate (see section 3.2). Agreement elsewhere is encouraging.

Piezo-electric quartz pressure transducers (Kistler type 7031) were flush-
mounted on the apparatus (i) 253 mm upstream of the chamber and (ii) on the
baffle plate at y=152 mm (i.e., y/D=2). Two other transducers were supported
externally (iii) at r=114 mm (i.e., r/D=1·5), u=0° and (iv) at r=114 mm,
u=45°.

3.1.   

Typical experimental pressure-time records are shown in Figures 3 and 4 for
abrupt and gradual diaphragm rupture, respectively. In these cases, there is no
expansion chamber, but there is a baffle plate (see Figure 1).

The upper pressure traces in each figure show measured pressure histories at the
upstream pressure transducer together with the corresponding smoothed versions
that have been used to define the upstream boundary condition in the numerical
calculations. In Figure 3, the smoothed curve is an abrupt pressure increase
followed by constant pressure until reflections begin to arrive from the portal. In
Figure 4, the leading part of the wavefront resembles the tan−1 shape illustrated
in Figure 2.

Figure 3. Measured and predicted pressure histories: simple portal (incident shock wave
(L/D=0), Dp*=12·1 kPa).
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Figure 4. Measured and predicted pressure histories: simple portal (incident wave front
L/D=1·02, Dp*=4·85 kPa).

The lower three traces in each figure show the corresponding pressures at
pressure transducers outside the portal, these traces being offset for clarity. The
positions of the transducers are defined by the co-ordinates r and u defined in
Figure 1. The smooth curves at these locations are theoretical predictions obtained
as described in section 2, by using a numerical grid size of Dx=Dy=D/28.

The shapes of the pressure histories outside the tunnel are characteristic of the
micro-pressure wave phenomenon. When an incident step wavefront reflects/
transmits at a simple portal, the resulting pressure field outside the tunnel may be
approximated by a single pulse propagating radially, but not uniformly in all
directions. The greatest magnitude occurs on the centre-line (u=0°) and
successively smaller magnitudes—but longer durations—are experienced with
increasing u. These trends are especially obvious with the abrupt incident pressure
change (Figure 3), but they can also be seen with the more gentle wavefront
(Figure 4).

With one exception, agreement between the experimental and theoretical curves
is sufficient to promote confidence in the numerical tool. The exception is on the
centre line (r/D=1·5, u=0°) in Figure 3 where the numerical peak exceeds the
measured value. The cause of this discrepancy can be traced to the assumption
that the initial pressure change at the upstream boundary occurs in exactly one
time step which, in this instance, is smaller than the true rise time—as can be seen
in the figure. Much closer agreement can be obtained by tuning the time step to
the particular application, but this would obstruct the underlying purposes of
the comparisons. It is considered more useful to highlight the difficulty than to
select an ideal time step in order to hide it. One advantage is that this enables
comparisons at the other positions in the figure to be regarded as a demonstration
of lower sensitivity to grid-size. The 45° position is the one that is most important
for practical purposes.
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Figure 5. Measured and predicted pressure histories: with expansion chamber (incident shock
wave (L/D=0), Dp*=9·77 kPa, h/D=1·06, l/D=0·64, w/D=0·24).

The physical outcome is also extremely sensitive to rates of change as large as
that considered in Figure 3. In practice, however, such large rates of change do
not occur in railway tunnels; the conditions shown in Figure 4 are much more
typical.

3.2.  

Figures 5 and 6 show the corresponding pressure histories when there is an
expansion chamber (d/D=3·12, h/D=1·06, l/D=0·64, w/D=0·24) just

Figure 6. Measured and predicted pressure histories: with expansion chamber (incident wave front
L/D=1·40, Dp*=6·22 kPa, h/D=1·06, l/D=0·64, w/D=0·24).
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upstream of the exit portal. There is a striking difference between these results and
those found with a simple portal (Figures 3 and 4). Instead of a single, pronounced
peak, the pressure histories exhibit two, more gentle peaks. Indeed, in the case of
the more gradual incident wavefront (Figure 6), the amplitude of the second pulse
exceeds that of the first.

The agreement between the measured and predicted curves is quite good except:
(i) on the baffle plate (r/D=2, u=90°) for both examples and (ii) on the
centre-line (r/D=1·5, u=0°) at t1 1·35 ms in Figure 6. The first of these
locations is on the baffle plate that was subsequently found to have been
inadequately supported (see section 3, second paragraph). There was no equivalent
problem with the simple portal (see section 3.1) because that plate was mounted
directly on the tube and was suitably braced.

The second discrepancy is at the leading edge of the micro-pressure wave, where
the measured value exhibits a short-lived peak that it not predicted numerically.
The cause of this discrepancy has not been tracked down, but the effect is believed
to be physical because it is also found in other tests results (not shown). One
possibility is that numerical dispersion is too great to permit the transmission of
such short-lived events with achievably small grid sizes. Another possibility is that
viscous effects have non-negligible influence on the wave transmission/reflection
processes at the ends of the chamber. Whatever the reason, the most important
deduction from all of Figures 3–6 is that the numerical predictions at the crucial
45° location are of sufficient accuracy for realistic deductions to be made about
the influence of expansion chambers.

The existence of two (or more) pulses is a characteristic consequence of the
chamber. The relative magnitudes of the peaks depend upon the chamber
geometry. As shown in these and subsequent figures, some geometries cause the
first pulse to be greatest; others cause the second to be greater. An implicit
objective of the following development is to select the shapes of expansion
chambers to equalize the two pulses, thereby minimizing the maximum amplitude.

The origins of the pulses can be deduced from Figure 7 which shows computed
pressure contours at successive instants. In Figure 7(a), the incident wavefront has
just reached the beginning of the expansion chamber. In Figure 7(b), there is a
negative reflection (R1) and a reduced positive transmission to the end of the
chamber. In Figure 7(c), the first pulse (P1) is leaving the tunnel and a positive
reflection is beginning to develop on the end wall of the chamber. This gives rise
to both P2 and R2 in Figure 7(d). The subsequent reflection of R2 at the upstream
end of the chamber gives rise to a second pair of pulses (only P3 is labelled in
Figure 7(e), but P4 can also be seen). Further reflections give rise to additional
pulses, but their magnitudes are relatively small.

4. OPTIMIZATION

Figure 8 shows predicted micro-pressure waves for two chambers, one labelled
h/D=0·222 and the other labelled h/D=0·444. The lengths of the chambers are
equal (l/D=1·0) so one is more than twice the volume of the other (herein the
‘‘volume’’ of a chamber is deemed to be the extra volume in comparison with the
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Figure 7. Predicted pressure contours; with expansion chamber (incident shock wave (L/D=0),
Dp*=1 kPa, h/D=0·24, l/D=1·5, w/D=0·24). (a) t'=0; (b) t'=0·81; (c) t'=1·63; (d)
t'=2·44; (e) t'=3·26.

simple tunnel). The predictions are shown at the position (r/D=2, u=45°) which
is a standard comparison position in Japan (see, e.g., reference [3]).

The influences of the chambers are shown for two incident wavefronts, namely
L/D=0 and L/D=1 (see Figure 2) and, by inspection, strong differences exist
in the detailed shapes of the micro-pressure waves. The continuous line
(h/D=0·444, L/D=0) has three peaks, of which the second is the greatest. In
contrast, the curve labelled h/D=0·222, L/D=0 has only two well defined peaks
and the curve labelled h/D=0·222, LD=1 has only one.

Herein, the effectiveness of each particular chamber with any particular incident
wavefront is deemed to be characterized by Dpmax , the amplitude of the greatest
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Figure 8. Predicted micro-pressure wave histories: influence of expansion chamber (Dp*/
pAT =0·079, l/D=1, w/D=0·0555, r/D=2, u=45°).

peak, irrespective of how many peaks exist. For simple portals, this is the
parameter that is primarily responsible for perceived nuisance outside the tunnel.
It is not certain that the same will be true when an expansion chamber exists, but
no more reasonable method of comparison has been identified.

No further pressure histories are shown herein. Many simulations are needed
for the development of the following figures and it is neither practical nor
necessary to display the raw data. Instead, each result is simply characterized by
the amplitude of the largest pulse, designated Dpmax .

Figure 9. Influence of chamber length on micro-pressure wave amplitude (the chamber height
h=0·222 D is relatively small, Dp*/pAT =0·079, w/D=0·0555).
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Figure 10. Influence of chamber height on micro-pressure wave amplitude (the chamber length
l=0·5 D is relatively small, Dp*/pAT =0·079, w/D=0·0555).

4.1.   

Figure 9 illustrates the influence of the length of the chamber (l/D) when its
height is maintained constant (h/D=0·222). The results presented for l/D=0
denote the case with no chamber so the figure enables a rapid visual assessment
of the effectiveness of different lengths of chamber. It is apparent, for instance,
that the influence on short wavefronts (small L/D) is greater than that on longer
wavefronts. Also, increases in the chamber length do not necessarily lead to
improved performance even though they imply greater volumes of excavation.

Consider first the results for a sudden wavefront (L/D=0). With no chamber
(i.e., l/D=0) the maximum micro-pressure amplitude is Dpmax /Dp*1 0·0103,
where Dp* is the strength of the incident wave. With successively longer chambers,
the amplitude of the first peak in the micro-pressure wave history reduces, but the
amplitude of the second peak increases. When l/D is smaller than about 0·5, the
first peak dominates, but thereafter, the second peak is more important. Thus,
there is an optimum length which for this particular chamber height, is about
l/D=0·5.

A similar result is obtained with the more gentle incident wavefront, L/D=1,
but the benefit of the chamber is less great than for L/D=0. Even less
benefit is obtained for L/D=2. This implies that the optimum dimensions of a
chamber might be quite strongly dependent upon the steepness of the incident
wavefronts: i.e. different chamber shapes (and sizes) might be preferred in different
tunnels.

The particular results in Figure 9 apply only for a chamber with a stipulated
height of h=0·222D. It is shown in the following paragraphs that larger
heights offer greater benefit, especially with longer wavefronts. Typically, the
optimum chamber height exceeds the optimum length—greatly so in the case of
large L/D.
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4.2.   

Figure 10 illustrates the influence of the height of the chamber for the particular
case of l/D=0·5. The results differ qualitatively from those obtained in Figure 9.
In particular, no optimum height is found. Instead, successive increases in height
yield increasing benefit until the curves become asymptotic to limiting values when
h/D exceeds about 1·0. The existence of an asymptote arises because of the time
required for waves to pass up and down the chamber. The time of arrival of
reflections from the top of the chamber eventually becomes too great for any effect
to be experienced on the main pulses of the micro-pressure waves.

The time interval between the first two pulses depends primarily on l/D, the
length of the chamber, but also on L/D, the length of the wavefront. It follows
that the limiting height should increase with increasing values of these parameters.
Figure 10 demonstrates the dependence on the wavelength; other results (not
shown explicitly) demonstrate the dependence on the chamber length.

4.3.   

Figures 9 and 10 are specific cases for particular values of the chamber height
h/D and length l/D, respectively. Attention now moves to the optimum
combination of these parameters, that is to the best shape of chamber. Ideally, this
would be found to be independent of (i) the chamber size and (ii) the length of
the incident wavefront. In practice, however, this is not quite so.

Figure 11 shows two sets of three curves, each set being valid for a particular
chamber volume. The various points on any particular curve correspond to
different combinations of height and length, chosen to yield the same volume
V= p(D+ h)hl. For example, the uppermost curves in the figures are applicable
for a chamber volume of 1

2V0 where V0 = 1
4pD3 is a reference magnitude, namely

the volume of a region of tunnel of length D. For the particular case of L/D=2,
for example, the optimum height of chamber is h/D1 0·475 and it follows that
the optimum length is l/D1 0·178. The optimum shape for this particular case
is therefore h/l1 2·67.

The lower set of curves in Figure 11 is applicable for a much larger chamber
with a volume of 2V0. For this case, the optimum height for a wavefront of length
L/D=2 is approximately h/D1 0·83 and the corresponding length is l/D1 0·33.
The optimum shape is therefore h/l1 2·5.

The uppermost curve in Figure 12 has been obtained by repeating this process
for additional chamber volumes. For the relatively long wavefront considered
above (L/D=2), the optimum chamber shape is not strongly dependent on the
overall size. A similar result is obtained for a step wavefront (curve labelled
L/D=0 in Figure 12), but the optimum shape is different (h/l1 1·5). This is
unfortunate for designers because it implies a need to know which wavefront is
most important for the particular tunnel under design. In practice, however, the
nature of the incident wavefront is influenced by many factors that may change
during the lifetime of a tunnel—e.g., train nose shape, train speed, tunnel entrance
shape.

The intermediate curve in Figure 12 (i.e., L/D=1·0) shows a different
behaviour from the other two, the optimum chamber shape being strongly
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dependent on the chamber size. For the smallest volume considered (0·5V0), the
dimensions h/D1 0·36 and l/D1 0·25 are similar to those preferred for an abrupt
wavefront. For the largest (2V0), they are the same as those preferred for longer
wavefronts, namely h/D1 0·83 and l/D1 0·50.

Figure 11. Influence of chamber height on micro-pressure wave amplitude (the chamber length
l is adjusted to achieve a constant chamber volume). (a) L/D=0; (b) L/D=1; (c) L/D=2.
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Figure 12. Influence of chamber size V/V0 and wavefront steepness L/D on the optimum shape
of a chamber.

In a practical design, the best chamber shape for any particular volume (and
hence cost) will depend upon the expected range of wavelengths. A suitable
strategy would be to choose the shape that provides greatest benefit for the steepest
incident wavefront that is expected to occur. This will ensure that the greatest
benefit is obtained when it is most needed. The chosen shape would be
non-optimum for longer wavelengths, but these are less important than the steeper
ones. Moreover, the proportional reduction in benefit will usually be small (see
Figure 11).

4.4.    

Figure 13 shows the maximum micro-pressure wave amplitudes resulting from
chambers of optimum shape. Consider, for example, a chamber of size V=2V0.

Figure 13. Amplitudes of micro-pressure waves; optimum chamber shapes.



.   .938

With an incident wavefront satisfying L/D=1·0, the maximum rise is
approximately 64% of the value with no chamber. That is, the peak has reduced
by 36% from the case with no chamber. This is achieved with a chamber of shape
h/l1 2·5 (see Figure 12), which implies that h/D1 0·83 and l/D1 0·33.

In some cases, reductions of these amounts might provide sufficient reduction
in the magnitudes of micro-pressure waves. More often, however, greater
percentage reductions are likely to be needed and so either (a) chambers with
volumes in excess of 2V0 will be needed or (b) other methods of alleviation must
be considered.

Expansion chambers such as those considered herein are simple and can be
expected to perform reliably. They may be a valuable additional counter-measure
even when they do not provide sufficient relief by themselves.

5. CONCLUSIONS

Simple expansion chambers close to a tunnel exit portal can cause significant
reductions in the amplitudes of micro-pressure waves propagating outside the
tunnel.

The optimum shape of such chambers depends upon the steepness of the
reflecting wavefront. Greatest percentage reductions are achieved for the steepest
wavefronts.

When a range of steepnesses of incident wavefronts is expected, the chamber
shape should be optimized for the steepest case that is considered feasible. This
will provide greatest benefit when it is most needed. In most cases, this shape will
also perform well with less steep wavefronts even though it is not optimum.

For any particular incident wavefront steepness, the optimum shape of the
chamber is dependent on the chamber size (Figure 12). For the steep wavefronts
of greatest relevance herein, however, the dependence is not strong.

Typically, a well-designed chamber with a volume of only V0 (i.e., 1
4pD3) may

cause a reduction of about 30% in the magnitudes of micro-pressure waves. This
is in addition to reductions resulting from other modifications (e.g., at the tunnel
entry).
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APPENDIX: LIST OF SYMBOLS

a characteristic speed (equation (6))
b matrix elements (equation (9))
c speed of sound
cp specific heat capacity at constant pressure
cv specific heat capacity at constant density
D diameter of tube/tunnel
d diameter of chamber
e specific internal energy
F flux vector
F
 numerical flux vector
G vector defined in equations (2)
H specific stagnation enthalpy
h height of chamber (see Figure 1)
L length of wavefront (see Figure 2)
l length of chamber (see Figure 1)
p pressure
Dp gauge pressure (0p− pAT )
Dp* amplitude of tan−1 wavefront (equation (15))
Q element of limiter function vector Q
R gas constant
R eigenvector matrix (equation (7))
r spherical co-ordinate (see Figure 1)
T temperature
t time
U vector defined in equation (2)
u axial component of velocity
V volume of chamber (excess over simple tunnel volume)
V0 reference volume (1

4pD3)
v radial component of velocity
W vector defined in equations (2)
w width of baffle plate (see Figure 1)
x axial co-ordinate
y axi-symmetric radial co-ordinate (see Figure 1)

Greek characters
a jumps in characteristic variables
8 ratio of principal specific heat capacities
d small positive number (equation (13))
u spherical co-ordinate (Figure 1)
r mass density
F numerical viscosity vector
f element of vector F
c element of entropy correction vector C

Superscripts
k matrix row number
' non-dimensional parameter

Subscripts
AT atmospheric condition
i spatial grid number
n temporal grid number
0 reference condition


	INTRODUCTION
	THEORETICAL BASIS
	Figure 1
	Figure 2

	COMPARISONS WITH EXPERIMENTAL MEASUREMENTS
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	OPTIMIZATION
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX

